What is SolarX Last updated: 2023-05-11

The SolarX project is an innovative and eco-friendly approach to cryptocurrency mining that aims to use renewable energy sources to power the mining process. This is a significant development in the world of cryptocurrency, where mining has traditionally been associated with high energy consumption and negative impacts on the environment.

Key Benefits

One of the key benefits of the SolarX project is its potential to be used as a model for sustainable cryptocurrency mining. As the crypto industry continues to grow and mature, concerns about the environmental impact of mining are likely to become increasingly pressing. SolarX represents an innovative solution to this issue, providing a more sustainable approach to mining that can be replicated and scaled up over time.


Overall, the SolarX project represents an exciting development in the world of cryptocurrency and green energy, combining cutting-edge technology with a commitment to environmental sustainability. By leveraging renewable energy sources and the latest mining hardware, SolarX has the potential to be a game-changer in the crypto industry, paving the way for a more sustainable and eco-friendly future.


By harnessing solar and green energy, SolarX can greatly reduce the carbon footprint associated with cryptocurrency mining, making it a much more sustainable and eco-friendly approach. The project's focus on using the latest, most efficient mining hardware also contributes to maximizing efficiency and minimizing energy consumption.

Solar X Mining Device


SolarX device is developed to use solar panels or other renewable energy sources to power the mining process, reducing the device's environmental impact and potentially lowering operating costs.

The mining device works by solving complex mathematical equations to verify transactions on a network and earn SolarX coins as a reward. This mining device is built on SolarX greenX chain and is compatible with the blockchain's consensus mechanism and follows its own network's rules for validating transactions between SolarX devices.

The use of renewable energy sources for cryptocurrency mining can help to create a more sustainable and eco-friendly industry and could potentially offer cost savings and other benefits for mining companies.

Reduced energy consumption: By using solar power instead of traditional power sources, the device could significantly reduce energy consumption and associated costs.

Environmentally friendly: Solar power is a clean and renewable energy source, which will help to reduce the carbon footprint of the mining process.

Increased efficiency: The use of solar power could increase the efficiency of the mining process, allowing for faster and more cost-effective coin generation.


Watt is a unit of power, which is a measure of energy per unit of time in SolarX mining. In the context of SolarX cryptocurrency mining, Watt will be used to measure the power consumption of mining hardware.

SolarX project will use Watt as a unit of measure for the power consumption of its mining hardware. Watt is a commonly used unit of power, which represents the rate at which energy is consumed or produced per unit of time. In the context of SolarX cryptocurrency mining, the power consumption of mining hardware is a crucial factor in determining its efficiency and profitability. By measuring the power consumption of mining hardware in Watts, the SolarX project can determine the energy efficiency of its mining operations and optimize its hardware accordingly.

Additionally, the use of solar power in the SolarX project's mining operations means that Watt can also be used to measure the energy production of its solar panels. By measuring the energy production of its solar panels in Watts, the SolarX project can optimize its solar panel arrays and maximize the amount of solar energy used in its mining operations.

Overall, the use of Watt as a unit of measure for the power consumption and energy production of mining hardware and solar panels in the SolarX project can provide a more standardized and transparent way of measuring the efficiency and sustainability of its mining operations.


SolarX mining device is a Solar-powered mining device that mines SolarX coins during the day and stores excess solar energy in a battery for use at night to mine. The mining device will be connected to a solar panel, an inverter, and a battery bank to function.

During the day, the solar panels will collect energy from the sun and convert it into DC electricity. The inverter will then convert this DC electricity into AC electricity that will be used to power the mining device. Any excess energy that is not immediately used by the mining device will be stored in the battery bank for use at night.

At night, or during periods of low solar generation, the mining device will draw power from the battery bank to continue mining.


SolarX Miner Energy Kit

Here are the specifications and key advantages of the Solar Panel and SolarX Miner Battery

Solar panel:

Technical Specifications:

Voltage at Open Circuit (Voc): 23.4V

Voltage at Maximum Power Point (Vmp): 18V

Current at Maximum Power Point (Imp): 1.11A

Short-Circuit Current (Isc): 1.16A

Key Advantages:

Advanced Energy Harvesting: With a Vmp of 18V, the solar panel excels in capturing sunlight, ensuring optimal energy conversion even in less-than-ideal conditions.

Reliability Unleashed: Boasting a short-circuit current (Isc) of 1.16A, this solar panel guarantees consistent and secure performance, adapting to diverse environmental challenges.

Compact Efficiency: The 350x350mm dimensions is an ideal choice for seamlessly integrating solar power into mining.


Technical Specifications:

Model: Enersys NP5-12

Type: Sealed Lead Acid (SLA), Valve-Regulated Lead-Acid (VRLA)

Voltage: 12 Volts

Capacity: 5 Ampere-hours (Ah)

Maximum Cycle Life: 1200 cycles at 50% depth of discharge (DoD)

Key Features:

High Reliability: The Enersys NP5-12 is built for reliability, providing a steady and consistent power supply.

Maintenance-Free Design: With a sealed construction and VRLA technology, this battery requires no maintenance, allowing for convenient and worry-free operation.

Long Cycle Life: Designed for durability, this battery boasts a maximum cycle life of 1200 cycles at a 50% depth of discharge, ensuring a cost-effective and long-lasting energy solution.

Compact Form Factor: The NP5-12's compact size makes it easy to install in various spaces, providing flexibility in designing your energy storage system.

First Time Setup

Device Setup Instructions

Upon your initial purchase, it's essential to commence operations in the morning to ensure your miner receives the vital sunlight needed to power up and begin its mining process. To begin using the Miner, log into your solarx.ai. account. Once logged in, navigate to the 'Home Page' and locate the section labeled 'My Assets' where you will find your unique 'Secret Key.' Copy this key as it is crucial for the setup process. Remember to store your secret key securely, either by committing it to memory or storing it offline to prevent unauthorized access. Avoid phishing attempts by not sharing your secret key and reporting any suspected compromises promptly to our support team.

To initiate setup, start by turning on the device using the button at the top of the Miner. Upon startup, the SolarX logo will display on the screen. Once you see the logo, on your Android or iOS phone, navigate to the settings menu and locate the Wi-Fi options. Connect to the "SolarX" network without a password. If you encounter difficulties, use the "Reset Button" on the top right side of the Miner.

Once connected to the SolarX device's Wi-Fi, your phone will display the Wi-Fi manager screen. Tap on "Configure WiFi" and select your preferred Wi-Fi network by entering its SSID and password. Input your designated secret key in the appropriate field and save the settings. Allow the device a minute to establish the connection. Once the connection is established, exit the configuration screen. You can now monitor your mining balance by logging into your account at solarx.ai. If you encounter any issues with the configuration, utilize the "Reset Button" or contact our Web Support at our Platform solarx.ai. for assistance with Miner setup.

Device Resetting

If you need to reset your configured device, locate the reset button on the back of the device plate, positioned on the top right side. Press and hold this button for approximately 10 seconds. This action will perform a factory reset, clearing the Wi-Fi connection, secret key, and any previous user data. After the reset is complete, you'll need to go through the device setup process again, following the steps outlined in "Device Configuration".

Device Arrival

Upon your initial purchase, it's essential to commence operations in the morning to ensure that your miner receives the vital sunlight needed to power up and begin its mining process. Upon receiving the device, the battery will be fully charged, allowing for immediate setup. Turn on the device and proceed to configure the Wi-Fi settings with the provided secret key, following the steps outlined in "Device Configuration." You can connect the Solar Panel to the device right away, ensuring it's directed towards the sky with no obstructions, aiming for a 360-degree view of the sky. In sufficient daylight, the Solar Panel will begin harvesting energy and send it to the solar charge controller, initiating the battery charging process. You can monitor the balance of the mining at solarx.ai.

Optimal Placement for SolarX Miner and Solar Panels

Where to Put Your Solar Panel?

To maximize the efficiency of your solar-powered mining setup, the correct placement of your solar panel is crucial. Here's a quick guide:

Find Your Solar Sweet Spot: Identify an area with the most direct sunlight exposure, avoiding obstructions such as tall buildings or trees that may cast shadows on your panel.

Maximize Southward Orientation: Whenever possible, position your solar panel towards the geographic south to ensure consistent exposure throughout the day.

Tilt for Efficiency: Depending on your latitude, consider tilting the panel slightly towards the sun's path to optimize energy absorption. Consulting a solar professional for precise adjustments may be beneficial.

Stay Clear of Debris: Regularly clean your panel to remove dust, dirt, or any obstructions, ensuring a clean surface for optimal energy conversion.

While solar panels are designed to withstand various conditions, it's prudent to exercise caution. Avoid letting heavy snowfall or rain accumulate on the panel, as it may temporarily hinder its function. Regular inspections and gentle removal of snow or debris can help maintain optimal performance. Ensuring that your solar panel directly faces the sun guarantees efficient energy accumulation, seamlessly powering your miner. In the event of a solar connection loss, a safety feature will automatically power off the miner until the panel is repositioned for maximum sun exposure.

Remember, a well-oriented solar panel guarantees uninterrupted mining operations.

Caution: If the solar panel is experiencing issues with sunlight or any other problems, and the battery health indicates it is low, it is necessary to take action. Disconnect the solar panel cable and instead, insert the DC Adapter jack cable into the solar panel port. Ensure that the DC Adapter is securely connected until the solar panel is operational again and capable of producing sufficient power. This switch will temporarily allow the miner to operate using the DC Adapter until the solar panel's functionality is restored.

Caution: It is crucial to monitor the battery health of the miner. If the battery health is depleted, you must recharge the battery before turning off the miner. However, it's important to note that leaving the miner turned off for extended periods, especially when the battery health is very low, can be detrimental to the battery. This practice may lead to further degradation of the battery's health. Therefore, it is advised to ensure the battery is adequately charged or powered regularly to maintain its health and longevity.

Where to Put the Miner?

It's essential to shield your miner from extreme cold and excessive heat to ensure stable performance and prolong the lifespan of your equipment. Choose a location with a moderate climate to keep your mining operations running smoothly. Avoiding extremes in temperature is crucial for maintaining optimal functionality and efficiency.


Should we leave the Miner together with Solar Panel outside?

While the SolarX Miner is designed to harness solar power, it's important to note that the miner itself should be kept indoors in an environment with a moderate and stable temperature. Extreme temperatures, whether too high or too low, can have adverse effects on the miner's performance. The solar panel, on the other hand, should ideally be placed outside in direct sunlight for optimal energy absorption. Providing a shelter or protective covering for both the miner and the solar panel can help safeguard them from harsh weather conditions. This ensures the longevity and efficiency of your mining setup.

Is it necessary for me to remain logged into the platform for mining to occur?

No, you do not need to remain actively engaged on the platform for mining to take place. Once the SolarX Miner is turned on and properly aligned with the sun, it will continue to mine autonomously. You can periodically check your mining balance by logging into your account on our official platform at solarx.ai. However, rest assured that the mining process will continue uninterrupted regardless of whether you actively monitor it or not. The SolarX Miner is designed for seamless and continuous operation.

Do we need to buy something for the Miner to operate better?

No, you won't need to make any additional purchases for the miner to operate optimally. Upon purchasing the SolarX Miner, you will receive both the miner itself and a dedicated solar panel, along with a comprehensive manual guide. These components are carefully selected to ensure seamless and efficient mining operations. Rest assured, you won't require any supplementary equipment; your miner is ready to mine with the provided setup.

Where to turn on the miner?

The SolarX Miner features a prominent power button located on the top of the device. Simply press this button to initiate the mining process. For detailed setup instructions, please refer to the 'First Time Setup' section provided below.

Is it necessary for the miner to be in close proximity to the Wi-Fi network?

Yes, it is recommended to position the miner as close to your Wi-Fi network as possible. The closer it is, the better the connectivity. Placing the miner too far from the Wi-Fi source may result in connectivity issues and potential errors. Ensuring a close and stable Wi-Fi connection will optimize the performance of your SolarX Miner.

Mining Rewards Calculation

Just like other mining rigs and antminers, our device operates within a network where the level of difficulty is influenced by the total wattage present. In our unique mechanism, known as PoGE (Power of Green Energy), the higher the wattage on our network, the greater the challenge. Essentially, our device functions based on an equation that incorporates all the 'wattage' currently present on the network, in addition to your individual 'wattage' contribution.

In the PoGE mechanism, we calculate the total active 'wattage' generated by all the current SolarX Miners and distribute them among the miners based on the amount of watts they utilize. This ensures fair distribution and efficient utilization of green energy within our network.

Use cases for the token, its utility and how do users and the ecosystem earn

Introduction to SolarX Mining Ecosystem:

The SolarX mining ecosystem offers an innovative approach to both mining rewards and energy consumption, driven by sustainable practices and technological advancements. Beyond merely generating rewards, our mining devices provide a means to offset electricity costs through harnessing solar energy.The operational dynamics of this ecosystem are transparent and easily comprehensible, ensuring user engagement and empowerment.

Future Roadmap and Utility Expansion:

Our roadmap outlines a trajectory where mining devices not only facilitate blockchain operations but also serve as versatile energy hubs. We envision a future where surplus energy generated by these devices powers personal electronics such as laptops, smartphones, cameras, and drones. Furthermore, we aim to establish charging stations catering to delivery drones and electric vehicles (EVs), offering users additional revenue streams and enhancing the overall utility of the ecosystem.

Explaining the technical prospect on how the mining reward works

Mining rewards are intricately tied to the functionality of our mining devices within the Xchain ecosystem. Powered by solar panels, these devices not only sustain their operations but also store excess energy in onboard batteries, ensuring uninterrupted performance during periods of low sunlight. The calculation and distribution of rewards are managed autonomously within the Xchain, leveraging proxy contracts to interact with other blockchain networks. This sophisticated approach, dubbed Proof of Green Energy (PoGE), eliminates the need for conventional proof-of-consumption mechanisms.

Explaining the chain we are building, coins, contracts and specifics

The foundation of our ecosystem lies in the Xchain blockchain, underpinned by the innovative PoGE consensus mechanism. Xchain operates as a decentralized network, seamlessly integrating with various blockchain protocols, including PoW, PoS, PoC, and PoA, through smart contract proxies. This interoperability fosters a conducive environment for token creation and cross-platform mining activities, promoting diversity and flexibility within the ecosystem.


SolarX is an ERC-20 governance and utility coin that is used in SolarX mining devices. SolarX is the native coin of SolarX “SOLX” will be required to buy the mining device. SolarX will be used in real-life use cases and in the ecosystem of SolarX.

“SOLX” is a utility and governance token that is specific to the SolarX ecosystem.


“SOLX” is required to purchase the SolarX mining device, which suggests that it will have a role in securing the network and/or providing rewards for miners. “SOLX” will be used in real-life use cases such as purchasing items and paying for electricity charges for SolarX grid mini-Grids and recharging cars. This suggests that “SOLX” will have utility as a means of exchange or store of value within the SolarX ecosystem.

“SOLX” will be used to buy electricity and sell electricity, which suggests that the SolarX ecosystem will be involved in the energy marketplace or grid.

Paying for the SolarX commercial decentralization NODEs with “SOLX”

It will be used on gaming platforms to purchase items and pay for cloud services. This suggests that Solx may have some role in incentivizing gameplay or creating a more immersive gaming experience.

Overall, $SOLX will have a variety of use cases within the SolarX ecosystem, ranging from securing the network to facilitating real-world transactions to enhancing mining and grids. It will be interesting to see how this token develops and how it is ultimately used within the SolarX ecosystem.

SolarX Coin (SolarX) total supply is 700,000,000 coins. But that's just the beginning of our journey. Get ready to experience the future of blockchain technology with XChain, our innovative blockchain platform. XChain offers lightning-fast transaction speeds, making it ideal for everyday transactions and high-volume use cases. Say goodbye to long confirmation times and hello to instant transactions. But XChain is more than just a fast blockchain. It's a platform for innovation and creativity. Developers can leverage XChain to create their own tokens and digital assets, opening up a world of possibilities for decentralized applications and financial instruments. Whether you're building the next big thing in decentralized finance or exploring new ways to tokenize real-world assets, XChain provides the tools and infrastructure you need to succeed. Join us as we revolutionize the world of blockchain technology with SolarX Coin and XChain. The future is decentralized, and it starts here.

SolarX Coin Allocation

The total supply of SolarX is permanently fixed at 700 million coins, so the total supply will never increase above the 700 million mark. Similarly, the contract interface does not expose any token-burning capability, so the total supply will never decrease.

SolarX is fixed at 700 million coins and there is no token-burning capability, which means that the total supply will never decrease. This fixed supply can help to create scarcity and potentially support the price of the coin over time, as demand for SolarX increases.

Having a fixed supply also ensures that the SolarX ecosystem remains stable and sustainable in the long run. It also means that the SolarX team will carefully manage the distribution of coins to ensure that there is enough liquidity to support the various use cases of the coin, such as buying and selling goods and services within the ecosystem.

40% MINING 280.000.000
8% TEAM 56.000.000
5% MARKETING 35.000.000
15% STAKE 105.000.000
3% ADVISORS 21.000.000
29% ECOSYSTEM 203.000.000

Different Entities

Who /What are the different entities and names and how do they relate to each other?

SolarX group is a Web 3 company located in Dubai, best known for the crypto world and the new concept of mining.

SolarX coin will be the newest project of the company, and it's intended to build a better mining concept in crypto.

SolarX is the steward of “SOLX”, a legal entity that exists to administer the decisions of the SOLX DAO.

SOLARX is a decentralized governance organization that will make decisions regarding ecosystem fund allocations, governance rules, projects, partnerships, and more “SOLARXCOIN".

DAO membership is open to all “SOLARXCOIN” holders.

Foundation control and role

Does the foundation control the SOLX coin and/or the SOLARX DAO? If not, what role do they play?

The Foundation does not control the “SOLX” Coin or the “SOLX” DAO. The Foundation consists of an administrative board, which exists solely to oversee the decisions of the “SOLX” DAO, as well as a third-party project management team in charge of ensuring “SOLX” Coin DAO decisions are implemented. A decentralized autonomous organization (DAO) is the best way to give every member of the community a vote on important decisions, whether it’s a technical upgrade or a decision to fund a new idea.

However, the reality is that today a DAO cannot sign a lease or hire people or make merch, or do whatever the community decides to do on its own. The Foundation is responsible for the day-to-day administration, bookkeeping, project management, and other tasks that ensure the “SOLX” Coin DAO community’s ideas have the support they need to become a reality.

Foundation Board

How was the foundation board selected?

Certain members of the community that have strong operational experience were consulted on how to best structure the “SOLX” Coin DAO. Several of these members voiced their willingness to join the Board to oversee the decisions of the community and are committed to upholding and furthering the decentralization of the “SOLX” Coin DAO. The initial Board will serve 2 years

Other individuals

Will there be a chance for other individuals to join the board?

Yes, after the initial 2-year term, DAO members will vote annually to keep existing or appoint new Board members. “SOLX” Coin token holders (the DAO members) can also remove or replace a Board member at any time with a majority “In favor” vote.

Token Distribution Transparency Report: Community Holder Overview

After careful consideration, We have excluded addresses earmarked for specific purposes such as team allocations, liquidity provisions, and other reserved functionalities. The goal was to offer a comprehensive overview of the token distribution, focusing solely on the addresses that represent the broader community of holders.

In an effort to ensure transparency and accuracy, We meticulously examined all addresses associated with our token.

Excluded addresses: 0x6aF1f83EA40Ee4CBF18eF9316D4aBC5b59572063

Excluded addresses: 0x477c177ce8185c2BF0f922C3796435eC60bCd3a5

Excluded addresses: 0x3D3B5b8e084AeaDdb43B6Aa05a8eb35675DA084F

Excluded addresses: 0x91AA2674B42ad99c8b95f14edA9464a5971DF684

Excluded addresses: 0xd7bC61ac889068F01FEf5018C518d297298a5493

Excluded addresses: 0xe87bA7fE711552eB9458Fd052D3eA9B8a16CCD6F

Excluded addresses: 0x3A8a52Ce5254803BE5A81d38292602D606FD3784

Excluded addresses: 0xEf7b4A77D85f92D7086abfe38B154F0c18dF7F19

Excluded addresses: 0x659F3B84A520fFB7dEbd640e50DD25b3bb05C339

The refined calculation reveals that the total circulating supply in the hands of holders is now 2,524,950. This represents an elegant 0.36% of the total token supply.





In anticipation of the exciting developments ahead in 2024, the SolarX ecosystem is poised for significant growth and innovation. Here's a glimpse into what we're eagerly awaiting:

Blockchain Mainnet Launch: We're gearing up for the official launch of our blockchain mainnet, marking a pivotal milestone in our journey towards decentralized infrastructure.

Deployment of Development Grants: We're committed to fostering innovation within the SolarX community, and we're thrilled to deploy development grants to support projects that push the boundaries of what's possible in renewable energy and blockchain technology.

Testing of New Mining Rigs: As part of our ongoing efforts to optimize mining efficiency, we're rigorously testing new mining rigs to enhance our network's hashing power and sustainability.

Release of Launchpad: Our launchpad is set to revolutionize fundraising in the blockchain space, providing a platform for promising projects to gain traction and funding from the community.

Expansion of CEX Listings: We're excited to expand our reach by securing listings on top-tier centralized exchanges (CEX), making SolarX more accessible to a broader audience of traders and investors.

Inaugural Token Burn: We're initiating our first token burn event, reducing the token supply and enhancing scarcity, which in turn can positively impact token value and investor confidence.

Launch of Host Mining: Our innovative host mining program will empower individuals to contribute to the SolarX network's security and decentralization while earning rewards for their participation.

Introduction of Staking Program: With the launch of our staking program, token holders will have the opportunity to earn rewards by participating in network validation and governance.

Commencement of Launchpad Test Phase: Ahead of the official launch, we're conducting a thorough test phase of our launchpad to ensure seamless functionality and security for project launches.

Invitations for Grant Applicants: We're inviting aspiring projects and innovators to apply for development grants, fostering collaboration and creativity within the SolarX ecosystem.

Tier 1 CEX Listing: Achieving a listing on a Tier 1 CEX is a significant milestone for SolarX, opening up new avenues for liquidity and market access.

Expansion to DEX Listings: In addition to centralized exchanges, we're pursuing listings on decentralized exchanges (DEX) to provide users with more options for trading and liquidity provision.

SolarX Conference: Stay tuned for the SolarX conference, where industry leaders, innovators, and enthusiasts will come together to explore the latest advancements in renewable energy and blockchain technology.

Blockchain Testnet Deployment: We're rolling out our blockchain testnet, providing developers with a sandbox environment to experiment and build on the SolarX network.

Dispatch of New Mining Rigs: New batches of mining rigs are on their way to further decentralize and secure the SolarX network, ensuring its resilience and sustainability.

Revamped Website and Branding: We're unveiling a fresh new look for the SolarX website and branding, reflecting our commitment to innovation and user experience.

Team Expansion: As we scale our operations, we're growing our team with top talent from diverse backgrounds to drive the SolarX vision forward.

Marketing Relaunch: With renewed vigor, we're relaunching our marketing efforts to raise awareness and engagement across various channels, amplifying the SolarX message to a global audience.

Commencement of Token Sale: The highly anticipated token sale will kick off, providing an opportunity for supporters to acquire SolarX tokens and participate in shaping the future of renewable energy and blockchain technology.

As we embark on this exciting journey, we invite you to join us in realizing the full potential of SolarX and contributing to a more sustainable and decentralized future.


The benefits of SolarX cryptocurrency mining company that utilizes renewable energy sources such as solar power, are numerous. Here are some of the potential advantages:


Benefits of SOLARX

Zero Air Pollution: Unlike traditional power sources such as coal or gas, solar power does not produce any emissions or air pollution. This makes it a much cleaner and more environmentally friendly option for powering mining operations.

Zero Gas Fees: By using renewable energy sources to power its mining operations, a SolarX cryptocurrency mining company can eliminate the need for expensive gas fees on the blockchain.

Green Environment: By reducing the carbon footprint of mining operations, a renewable energy-based mining company can help to create a more sustainable and eco-friendly environment.

Free Electricity: If the mining company can generate more energy than it needs for its mining operations, it can potentially sell the excess energy back to the grid, generating additional revenue and potentially even offsetting the cost of mining.

Passive income: Mining cryptocurrency can be a lucrative business, generating a steady stream of passive income for the company and its investors.

Overall, SolarX is a cryptocurrency mining company that utilizes renewable energy sources that can provide a range of benefits, both for the environment and for the company's bottom line. By leveraging the latest technology and sustainable energy sources, such a company can help to pave the way towards a more sustainable and environmentally friendly future for the cryptocurrency industry.

SolarX Facility

President Joe Biden plans to invest $2 trillion in clean-energy initiatives over the next four years, with a loftier goal of making America a net-zero-emissions country by 2050. Just how much progress he can make remains largely up to the composition of Congress, but most analysts expect a much more accommodative Washington for green energy over the next few years.

Source:: "The NY Times. February 2021. “Biden Announces $2 Trillion Climate Plan.”

China has now committed to reaching carbon neutrality by 2060, putting the world’s biggest market for solar and wind power on the path to ramp up installations as it begins its next five-year plan.

Bloomberg New Energy Finance’s recent report shows that the sector will receive nearly $5.1 trillion worth of investment in new power plants by 2030. Given the anticipated spending spree in the sector, investors who choose to "go green" could see their holdings grow along with the demand for energy.

SolarX Farm

The energy transformation as a supply grid issue: Currently, large central power plants basically supply their immediate surroundings. In the future, more small SolarX mining devices, decentralized wind and solar generators will take on a greater load of the supply. This will lead to a new network architecture that may be less vulnerable to power outages than present-day grids, contrary to the fears of some

Wind Farm

As large power plants are replaced by multiple photovoltaic panels on roofs, and wind turbines on hills and offshore, we now believe that synchronization in a decentralized power grid may actually be easier than previously thought, as a grid with many generators finds its own shared rhythm of alternating current.

Solar and wind energy will help stabilize the power grid and cryptocurrency mining.

Renewable energies such as wind and the sun are set to become increasingly important in generating electricity. If increasing numbers of wind turbines and photovoltaic systems feed electrical energy into the SolarX grid, it becomes denser and more distributed. Therefore, instead of a small number of large power plants, it links a larger number of small, decentralized power plants supporting cryptocurrency mining.


Solar Farm

Cloud mining has so far been expensive. You accumulate just coins, but with the SolarX cloud mining facility, you mine coins and sell energy to the grid:


A SolarX electricity facility that powers the grid and does cloud mining, also known as a solar power plant or solar farm, will refer to a large-scale solar energy generation facility that feeds electricity directly into the power grid for widespread distribution to homes, businesses, communities and does mining producing coins for those who invested in SolarX facility.

SolarX power plants will typically consist of arrays of solar panels or photovoltaic (PV) modules that capture sunlight and convert it into electricity through the photovoltaic effect.

The electricity generated is then fed into the grid through inverters that convert it from direct current (DC) to alternating current (AC) for distribution to consumers.

Electricity Facilities

Solar electricity facilities powering the grid can have various sizes and capacities, ranging from small-scale SolarX mini grids installations to utility-scale plants that generate large amounts of electricity to meet the energy needs of a significant number of users. These facilities have several advantages:

The surplus electricity generated from the solar panels, which is not used for mining, can be sold back to the grid or to other consumers, creating a potential revenue stream. This can offset the energy costs associated with cryptocurrency mining and make the mining operation more sustainable and environmentally friendly by utilizing renewable energy sources.

Renewable energy: Solar power is a clean, renewable source of energy that does not produce harmful emissions, greenhouse gases, or pollutants, making it environmentally friendly and contributing to mitigating climate change.

Grid stability and energy security: Solar power plants can contribute to grid stability by providing a consistent and reliable source of electricity during peak demand periods, reducing reliance on fossil fuel-based power sources, and enhancing energy security.

Increased energy independence: Solar panels can provide a decentralized and independent source of energy for cryptocurrency mining operations, reducing dependence on traditional energy sources, and increasing energy resilience.

Cost savings: Utilizing solar energy can offset the electricity costs associated with cryptocurrency mining, potentially increasing profitability for miners.

Sustainable energy generation: Solar power plants do not deplete natural resources and do not produce harmful waste or byproducts, making them a sustainable form of energy generation.

Positive marketing and branding: Utilizing renewable energy for cryptocurrency mining can contribute to a positive image and branding for the mining operation, appealing to environmentally conscious investors and customers.

In general, solar energy objects that supply the grid and produce coins play an important role in the transition to a more sustainable and renewable future of energy production and crypto mining by providing clean electricity to the grid for widespread use. They contribute to reducing greenhouse gas emissions, promoting energy security, promoting economic growth, and adapting currency crypto to your life in a healthier approach. A solar green energy facility can be an asset for both mining cryptocurrency and generating electricity for sale through the grid.


Micro Grids


The production and distribution of electricity today still relies on energy-producing companies. A centralized power station generates and distributes energy to consumers through large energy transmission channels. Consumers are required to pay high prices for electricity bills if they want to consume the energy supplied by these power stations. High electricity bills, frequent power outages, irregular voltage supply, and other issues are some of the problems that consumers face, but they can do little about them. Therefore, there is an immediate need for decentralization and distribution of energy generation. Reducing carbon emissions remains one of the energy industry's most complex challenges daily.


Large amounts of carbon dioxide and other pollutants are polluting the atmosphere, leading to unhealthy air and a dangerous atmosphere. Geopolitical relations have been heavily impacted, with few effective strategies developed to address this issue.

Energy companies also need to adhere to the rules of energy regulatory commissions and implement best practices to provide long-term benefits and improve the quality of life for consumers. On the other hand, consumers have also recognized the need for efficient energy methods, leading to a high demand for such devices.

To eliminate the need for a centralized energy station, SolarX can be used. SOLARX will build decentralized local energy supply sources and can connect neighboring households through a microgrid. Microgrids on the SOLARX platform can be developed to connect adjacent residences to form a local energy station.

A home with excess energy resources (such as a solar panel) can share the excess energy with another home that requires energy for consumption. Smart meters executed by smart contracts will record the energy supplied and consumed by the respective parties on the SOLARX platform (dashboard). This encourages peer-to-peer communication on the SOLARX platform, where participants can decide on the amount they want to pay, to whom to sell their excess energy, etc.


Optimize the cost of electricity

Implementing SolarX microgrids also helps optimize the cost and fair pricing of electricity. Furthermore, SolarX ensures that there is no unfair pricing and any fraud in the process since everything will be decentralized. This way, energy can be consumed and distributed more effectively and efficiently among others. This can provide a small but important step in indirectly reducing carbon.

One of the strengths of SolarX microgrids will also be the storage of electricity. The innovation of energy storage and sales to others by utilizing the SolarX platform will enter the electricity industry, which has great potential and has been used very little, almost not at all in crypto.

A SolarX-based energy storage and trading platform among consumers can provide transparent, secure communication for users for sharing energy resources and enable easy interaction.

The decentralized SolarX platform can be used to promote industries that actively support efficient energy innovations by investing heavily in the development of renewable energy sources. Consumers who use SolarX solar panels or other panels can share and trade excess energy with their neighbors (using SolarX microgrids as discussed above) and will also be rewarded with coins to encourage and expand decentralization.


GIS Mapping

SolarX by using Lidar and GIS mapping, SolarX will gather detailed and accurate information about the terrain, solar radiation, and environmental factors in a given area. This data will then be analyzed to identify areas that are suitable for solar crypto mining while minimizing the impact on the surrounding environment and communities.


Using Lidar, SolarX will create detailed 3D maps that provide information on the height and slope of the land, as well as any obstacles that may be present. This information can be combined with GIS data to identify areas that receive sufficient solar radiation and are also suitable for solar crypto mining development.

The use of GIS mapping will also help SolarX to assess the potential impact of solar crypto mining on the surrounding environment and communities. By considering factors such as wildlife habitat, water resources, and cultural resources, SolarX can ensure that the development is conducted in an environmentally responsible and sustainable manner. The use of Lidar and GIS mapping by SolarX is a promising approach to identifying suitable areas for solar crypto mining development while minimizing the impact on the environment and communities.


Charging Points

The electric vehicle sector is promising for increasing energy security, economic opportunities, and improving air quality worldwide. It also strengthens the goals of SolarX in the EV world.

Before many electric vehicles (EVs) are integrated into the electric grid, an investigation and assessment of important parameters are required.

Decentralized charging network

The additional linear loads and EVs will be connected to the decentralized market. SolarXmini grid, many automotive companies have already invested in the electric vehicle sector; the market is growing. It is growing quickly, and it is growing everywhere.

Driven by a decarbonization challenge that most leading countries are now taking seriously, global sales of electric vehicles will continue to accelerate in 2022. Looking at the first five months of the year, over 3.2 million new plug-in vehicles were registered worldwide.

The growth in electric vehicle registrations in Europe, where numbers are accelerating much faster than anywhere else since 2019, can be attributed to the stimulating measures introduced by many European governments. Large markets have also introduced tax benefits and subsidies, which have contributed to the increase in sales.

Sources: EV Volumes & Global EV Outlook

The biggest barrier to the adoption of electric vehicles remains the limited availability of charging infrastructure, but the more electric vehicles there are on the road, the greater the need for more charging points. SolarX aims to provide everyone with this opportunity in the future and to make it decentralized. In 2021, there were over 376,000 publicly available EV chargers in Europe, and by 2025, it is estimated that there will be over 1.3 million charging stations accessible to the public. The number should further increase to 2.9 million by 2030.

Source: EV Volumes

Solarx Grids

That's why SolarX plans to create the largest decentralized charging network, powered by SolarX grids (mining grids)

Vehicle-To-Grid (V2G) infrastructure


For the general design and study of vehicle-to-grid (V2G) infrastructure, this work also offers an overview of the representation of electric vehicles in different energy-efficient models and their categorization during network connection. The approved methodology for energy-efficient models includes life cycle emissions, economics, intelligent charging, real-time optimization, EV resource modeling, and a support vector machine (SVM) based method. This work positively impacts the integration of EV fleets and electric mobility in general, as it critically examines the influential parameters and challenges. This classification depends on the essential parameters at the forefront of EV network integration research. This review is a solution to increase network stability regarding new EV models. With the advanced development of electric motors and renewed battery technology models, cars with longer ranges are now available in the market. This document investigates the limitations of EV network integration and analyzes different EV models to facilitate network stability for a decentralized market.

SolarX Mini-Grids


Distributed decentralized generation sources (SolarXmini grids) are energy generation sources closer to consumer environments; they allow consumers to use renewable energy (RE) sources locally, thereby reducing maximum demand and losses on long-distance transmission. The paper summarizes the role of SolarXmining grids in meeting the requirements for clean and efficient energy locally.

The systems to fully exploit the advantages of implementing SolarX mini grids shortly, through the benefits, case studies of other countries, application, and economics of solar mining grids, can analyze and meet energy requirements in remote villages with renewable energy sources. The figure presents important advantages of decentralized generation for rural electrification.

Solarx decentralized grid and mining SolarX coins can be used to recharge electric vehicles in a more sustainable and cost-effective way. One way this can be accomplished is through the use of blockchain technology, which allows for peer-to-peer transactions and can help reduce the need for intermediaries.

In SolarX decentralized grid, energy is generated and distributed by multiple sources, such as solar panels, wind turbines, and batteries, which are connected through a SolarX grid (or SolarX mini grids). This allows for more efficient and flexible use of energy resources, which can be harnessed to recharge electric vehicles.

Mining coins of SolarX will be used to incentivize the production and distribution of renewable energy, which can then be used to recharge electric vehicles. Miners will earn coins by generating energy from renewable sources, and those coins could be used to purchase energy to recharge electric vehicles.

Planning trips with smart connectivity to find the location of charging stations is a viable solution for this. The demand for charging stations will rise due to the increase in electric vehicles. Consumers are opting for the ease of charging points and fast charging is preferred.

Overall, the use of decentralized grids and mining coins of SolarX can help create a more sustainable and efficient system for recharging electric vehicles.


Net Metering

Small wind turbines will be used in residential settings to directly offset electricity usage using net metering. Net metering allows customers to receive coins for excess electricity generated by their wind turbine that is fed back into the SolarX grid. These coins can then be used to offset the customer's electricity bill, making small wind turbines a cost-effective way to generate renewable energy for residential use.

In addition to offsetting electricity usage, small wind turbines will also be used to mine cryptocurrencies. The energy produced by the wind turbine will be used to power SolarX mining device, which will generate income by validating transactions and creating new blocks in the SolarX green chain. This can potentially provide additional revenue streams for homeowners and help promote the use of renewable energy sources. Distributed wind energy installations are common at, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kiloWatt (kW) turbine at a home to a multi-megaWatt (MW) turbine at a manufacturing facility. Distributed wind energy installations are either connected to the customer side of the meter to meet the on-site load, or directly to distribution SolarX micro grids to support grid operations or offset large loads nearby. Distributed wind energy installations are defined by technology application, not technology size, but are typically smaller than 20 MW.


Implementing distributed energy storage (DES) systems in households and their connection to the grid according to standards will be a solution for decentralized distributed energy systems. DES balances demand and generation and increases the reliability of renewable energy loads connected to the grid.

Solar X Grid(SG)

SolarX Grid (SG) system is an integrated system that optimizes the efficiency, reliability, control, quality-of-service, and stability of power transmission and distribution via distributed computing technology with the most autonomous and adaptive communication infrastructure. It has self-healing capabilities. During crisis situations of the power outage, all the electric utilities will operate in a reliable, effective, and coordinated manner. Proper regulation and load leveling in the energy market are essential as new technologies in EV charging and renewable energy sources are attached to the power grid, which will act as additional loads in this situation. Smart grids provide an effective infrastructure for the regulated exchange of power, as well as the secure flow of information or data between the utilities.

Smart Charging Schedule Strategy and Quadratic Optimization Model

Smart Charging Schedule Strategy and Quadratic Optimization Model for EV Connected to Grids

The smart charging strategy is very efficient, and it enhances the reserve capacity of power in electric grids to maintain load leveling. Selecting a suitable optimization method is a viable solution to lower the charging cost in EVs. Without the help of smart charging, integrating the fleet of EVs into the grid may result in disadvantages, as there will be an additional load on the electrical utilities which are presently managing the load leveling and regulation. By smart charging, EVs can be scheduled to be charged automatically in off-peak times, and active power support to the grid can be made available during peak hours. A new SolarX computing-based method implemented on SolarX-grids will serve the functionality of smart charging easily. For all optimization strategies, for charging there exists a problem statement for the mathematical model. Using a smart scheduling strategy, the objective function for optimization can be initialized. In general, mathematical notation, the minimum load in the power grid is: min(P2grid)


Where Pgrid is grid power is denoted in Pload profile is the everyday power demand of a region/area without charging power for EVs, and Pcharging is the charging power of EVs.


Charging during off-peak hours will reduce the electricity bills to a much lower amount, and also ensure grid stability and reduce the power demand on the consumer’s end .The quadratic programming approach also ensures a minimized cost of charging schedule and maintains a predefined SoC of EV battery, even after allotting power to different utilities in the grid [224]. 7.4.2. Real-Time Optimized EMS Model for Electric Vehicles with Smart Charging Modes in the Power Grid

Real-Time Optimized EMS Model

Real-Time Optimized EMS Model for Electric Vehicles with Smart Charging Modes in the SolarX Power Grid

As electric vehicle charging stations are designed and implemented at a faster pace than ever before, the reliability of the grid must be optimized by energy management systems (EMS), and cost-effective smart charging modes are to be utilized in V2G infrastructure ... The SolarXmicrogrid consists of a network of different loads like dynamic loads, PV loads based on maximum power point tracking, and EV charging stations, etc. Four EV charging modes with different user options are suggested in this EMS model, including energy/cost efficiency or ultra/fast charging. The dynamic programming in real time is analyzed to optimize the charging of EV batteries in ECO and V2G modes. This model formulates the cost function and studies the characteristics of EV battery charging parameters like the state of charge (SoC), depth of discharge (DoD), etc. The effect of V2G systems on the lifespan of EV batteries depends on battery degradation parameters and the total cost of ownership of different EV charging modes.

EV users have the option to select different charging modes, and EMS communicates to converters through a communication channel; real-time battery information is required for energy management. Illustrates four EV modes of charging, denoted as ULTRA, FAST, ECO, and V2G with power from the grid as PU, PF, PE, and PV2G. The function of EMS is to measure the power grid parameters and transfer the individual charging signals based on an optimization algorithm.

Energy Management System


The power balance Equations (2) and (3) of the arrangement are written as:


The resulting power between demand and generation is:


where Pgrid is grid power, Pnet is overall net power in V2G, PL is the power of additional loads, PPV is power from renewables, and PEVm is the overall power for the EV Fleet. ULTRA mode charging is for users with high priority, and it is for a shorter duration with demand not exceeding the saturation value. Here, a maximum permissible power charger is supplied. The FAST option is available to those who do not wish to spend as much as ULTRA mode, and priority-wise, it is less than ULTRA mode. No prediction data is available in this mode. ECO mode is for users with minimum cost and charging, with lower priority than previous modes. V2G mode has complex controls, and it satisfies both the grid and the EV battery. The predicted data of energy flow is taken into account, and this mode supplies power to other vehicles when ULTRA/FAST charging requests are not handled by the SolarX microgrids. When energy demand reaches a saturation point, higher priority modes are only enabled by EMS optimization.

Aggregated EV Resource Modelling for Load leveling and Regulation in Power Grids

Energy Security

Energy security for the long term is an essential element for a sustainable future in growing transportation consumption. A fleet of EVs is a significant energy resource for the power grid as vehicle to grid (V2G) and grid to vehicle (G2V) modes of battery charging will increase generation adequacy and provide flexible energy storage in the order of megaWatts. The model suggests a method to determine the bi-directional storage capacity of electric vehicles, and to enhance the voltage regulation of the grid. The standards in charging and discharging directly influence the voltage regulation of the grid. Through this scheme, notable revenue can be expected from a long-term energy capacity commitment.

EV scheduled charging using V2G reduces charging costs and emissions. A centralized charging scheme would allow more EV integration into the grid. An aggregator is an entity that controls a large fleet of electric vehicles and is the reason for integrating EVs into the power grid to balance the load and generation. The performance parameters in the charging and discharging stages are monitored using algorithms, and minute-wise energy storage capacity of the deregulated electricity market is analyzed, keeping constraints like arrival, departure times, travel and parking duration, etc. By the momentary fluctuation of energy data observed between power supply and demand, an accurate system-wide frequency is stabilized.

The grid regulation has two modes, regulation down (RD) and regulation up (RU), where regulation up occurs when the demand exceeds supply, and regulation down occurs when supply surpasses demand, to nullify the grid imbalances momentarily. The charging/discharging power, trip distance, and arrival patterns are several parameters that influence RU and RD. The grid regulation depends on the availability of vehicles, as well as the expected mileage of the available EV aggregation at various charging places.


A Block diagram that represents the power scheduling activity by an aggregator. The input stage involves collecting data on vehicle information, like fuel economy, vehicle capacity, arrival timings, driving mileage, etc. The information is given to data acquisition, which analyses and computes the charge and discharge energy storage capacity of electric vehicles available at various stages of parking. The G2V and V2G power selection constraints include vehicle capability, available parking, charging infrastructure, etc. Different ancillary service markets are committed to the output energy storage capacity via aggregated connected channels.


Hence, apart from improving grid dependability, the model also analyses the coordination of grid connection with EV aggregation, thereby increasing opportunities in the competitive deregulated electricity market for new EV integration also [235]. The simulative model for instantaneous power scheduling (minute-wise) helps to attain storage capacity via a large fleet of EVs. It also presents wide opportunities for many EVs in this network and enhances the regulated capacity commitment of the grid.

An SVM-Based Model for Mitigating Power Quality (PQ) Disturbances in V2G Infrastructure.

Power Disturbance Mitigation

As electric vehicle charging technology is advancing to smart techniques, power disturbance mitigation is also an important parameter to be considered when the electric vehicle is connected to charging stations. Moreover, electronic power components in the vehicle, as well as the charging station, generate more PQ disturbance, which will significantly affect the EV battery life if it is not compensated on time. Figure 12 denotes a supervised machine learning algorithm-based model, i.e., for the categorization and analysis of independent and combined PQ disturbances, the support vector machine (SVM) models can be utilized in EV charging and discharging. The detection, classification analysis, and regression of performance parameters in EV charging can be easily computed by SVM. The important advantage is that the most promising and probable PQ disturbance can be sorted out, and it can be analyzed and mitigated separately with SVM models.


When a large fleet of vehicles is considered, the PQ disturbances in the system will become significant, as many different non-linear loads are present in the grid. Initially, signal processing techniques were required for diagnosing PQ disturbances by Fourier transform (FFT), discrete wavelet transform (DWT), wavelet packet transform (WPT), etc. Out of these techniques, generalized empirical wavelet transform (GEWT) has gained more significant attention due to its simpler adaptive filter design.

The power signal for charging has a fundamental frequency component, and it is decomposed into mono-frequency components by GEWT. These methods adopted are computationally less expensive when compared with conventional approaches. The SVM model processes the linearly inseparable input data so that a kernel function K (ui; uj) is used to create a high-dimensional space feature. A separate complete analysis of PQ disturbance is possible by using the SVM model with GEWT. It is observed that the combined detection of PQ issues reduces the overall accuracy. Many SVMs are employed for PQ analysis in power grids, and separate SVMs are assigned to detect and analyze single disturbances. The signals generate fundamental frequency variations of the order of ±0.25 Hz at various phase angles. Due to the computational efficiency and adaptiveness of GEWT, it is also selected for evaluating non-stationary signals; hence, SVM-based PQ analysis.

GPS Technology

SOLARX GPS technology will be used in conjunction with decentralized SolarX charging stations to provide a more efficient and convenient way to recharge electric vehicles. Decentralized charging stations can be in various locations, such as Homes, parking lots, shopping centers, and public areas, which can be identified and located using GPS technology.


With GPS, electric vehicle drivers can locate and navigate to the nearest decentralized charging station and use their mobile devices to initiate the charging process. This will be accomplished through a mobile app that allows users to search for available charging stations, reserve a charging spot, and pay for the charging session using a SolarX Coin.

Additionally, GPS technology can be used to optimize the use of energy resources and reduce the cost of charging electric vehicles. By monitoring the location and charging patterns of electric vehicles, charging stations will adjust their output to match demand, reducing the strain on the grid and ensuring that energy is used in the most efficient way possible.

Overall, the combination of GPS technology and SolarX decentralized charging stations will help to create a more sustainable and efficient system for recharging electric vehicles, while also providing a more convenient and accessible experience for drivers.


The Benefits Of Electric Vehicles

Part of the review, the benefits of electric vehicles, such as reduced toxic emissions, and lower fuel, operating and maintenance costs, were basically an insight into the challenges and barriers in EV adoption to the decentralized market. In general, the definition of decentralized electricity markets in association with DERs was discussed; moreover, several EV models based on energy performance and influential parameters were categorized, along with case studies of a few countries. The classification of electric vehicles as different models was done based on critical parameters which draw more attention in the field of EV research. As EV technology is growing so fast, the ability of grids to automatically stabilize the necessary constraints will help the V2G ecosystem to add more EV fleets into it for charging, thereby reducing energy anxiety. This work is mainly concentrated on the generalized structure of decentralized markets and the impact of EV fleet integration into the grid. Hence, the renewable energy sources (RES) integration and other load impacts on the grid were not discussed in detail, but notable references were included.

The contributing parameters like peak shaving, valley filling, and load leveling gain importance for grid stabilization during V2G, and sufficient research data on this has to be included for different EV models. The above issues can be considered as the future scope of SolarX company.

The literature review is unbiased and conclusive in its assessment that it will bring solutions and insight to the current barriers to the implementation of EV in the power grid. Integrating nonlinear intermittent loads, such as renewable energy sources, into the grids and the potential benefits of the models discussed are worthy of further research. The advancement of technologies in the field of electric vehicles and decentralized markets will make it possible to make our lives easier and safer by using clean energy. We firmly believe that this evaluation has a positive impact on EV fleet integration and electric mobility.

SolarX AI


SolarX Smart grids will use AI algorithms to automatically detect weaknesses in power supply systems, identify areas where energy efficiency can be improved, and even predict when equipment malfunctions may occur. These intelligent networks will monitor conditions continuously and optimize energy usage based on various factors, such as demand or weather conditions. This means more reliable electricity delivery with less risk, allowing for greater energy sustainability over time.

Integrating AI algorithms into solar smart grids will bring numerous benefits to energy supply systems, including enhanced monitoring, improved energy efficiency, and increased reliability. Here are some specific advantages:

Fault Detection and Maintenance: AI algorithms will analyze real-time data from the power supply system to detect weaknesses or anomalies. By continuously monitoring conditions, the SolarX AI algorithm grid will identify potential equipment malfunctions or failures before they happen, allowing for proactive maintenance. This can minimize downtime and reduce the risk of power outages, ensuring more reliable electricity delivery.

Energy Optimization: AI algorithms will optimize energy usage by analyzing various factors, such as demand patterns, weather forecasts, and electricity pricing. By dynamically adjusting energy distribution and consumption, the SolarX grid will reduce waste and improve overall energy efficiency. This optimization will lead to cost savings and more sustainable use of resources.

Load Balancing: Smart grids with AI capabilities will intelligently balance the load across the system. By distributing electricity based on demand patterns and available capacity, the grid will avoid overloading and prevent power disruptions. This ensures a stable and consistent energy supply for both residential and industrial consumers.

Cost Savings: Solar smart grids will provide cost savings for mining operations by utilizing renewable energy sources, which have lower operational costs compared to traditional energy sources. Additionally, AI algorithms will optimize energy usage, reducing electricity bills and improving the profitability of mining SolarX coins.

Demand Response Management: AI algorithms will enable demand response programs, where consumers are incentivized to adjust their energy consumption based on grid conditions. By providing real-time feedback and pricing signals, the smart grid can encourage consumers to reduce or shift their electricity usage during peak demand periods. This helps to alleviate strain on the grid, improve grid stability, and optimize energy distribution.

Enhanced Planning and Expansion: AI algorithms can assist in long-term planning and expansion of the power supply system. By analyzing historical data, demand projections, and grid performance, the smart grid can provide insights for infrastructure development, such as determining optimal locations for new solar panels or wind turbines. This supports the growth of renewable energy capacity and contributes to long-term energy sustainability.

By leveraging AI capabilities in solar smart grids, it is possible to create more intelligent and efficient energy systems that can adapt to changing conditions, optimize energy usage, and ensure a reliable and sustainable electricity supply.

SolarX Commercial Decentralization NODE

SolarX commercial decentralization NODE is an urban concept that is often used as a land use policy to encourage a better balance between the number of residents and workers, to minimize work travel costs, and to allow companies to utilize labor, using green energy.

Solar Panels

Decentralized bike solar charging refers to a system where solar panels are used to generate electricity that can be used to charge electric bikes. The system is decentralized in that the solar panels and charging stations are distributed throughout the city, rather than being centralized in a single location.

The basic idea is that solar panels are installed at various locations around the city, such as on rooftops, public spaces, or other suitable areas. The solar panels generate electricity from the sun's rays, which is then used to charge batteries located at charging stations for electric bikes. The charging stations can be in public areas or other convenient locations, making it easy for electric bike users to charge their bikes while they are out and about.

Decentralized Bike Solar Charging

Decentralized bike solar charging has many potential benefits for cities, including:

1. Providing a renewable energy source for charging electric bikes, reducing the use of fossil fuels and carbon emissions.

2. Promoting the use of electric bikes for transportation, which can reduce traffic congestion and improve air quality.

3. Enhancing the accessibility of electric bikes by providing a convenient and reliable charging infrastructure.

4. Increasing the use of public spaces by providing solar panels and charging stations that can also serve as community gathering places.

Examples of decentralized bike solar charging systems can be found in various cities around the world, including Copenhagen, Amsterdam, and Barcelona.


Inefficient In-Mall Distribution

The current practice for freight distribution in shopping malls is mostly inefficient because of low time utilization of critical logistics resources (drivers, helpers, elevators, and loading bays), retail delivery delays, and unintended queues of other vehicles waiting to enter the mall's basement carpark. Current practice of loading/unloading starts with a freight vehicle, operated by a driver and a helper from a specific carrier, arriving at the loading bay. The helper unloads the freight and delivers it to one or more retail shops located on a specific floor using the mall shared facilities such as freight elevator. The helpers may need to wait for an available elevator, which may impose additional waiting time and lead to late deliveries. Meanwhile, the freight vehicle needs to wait until the helper returns before it departs from the mall. Other freight vehicles are then denied space in the loading dock and need to wait until the loading bays are available again.

Retail Precinct Management

To tackle those challenges, we propose the concept of Retail Precinct Management (RPM) which aims to encourage different stakeholders to collaborate in addressing the issues. Based on our observation, traffic patterns can change depending on spatial, temporal, and environmental conditions, such as time-of-the-day, day-of-the-week, weather, island-wide mega sale, festivals, holidays, exhibitions, etc. However, in recent years, advances in satellite tracking technologies have enabled the massive use of positioning systems in the transportation sector. This has provided an unprecedented opportunity for the emergence of intelligent, predictive location-based services.


SolarX will perform a time series analysis of bike recharge occupancy for several nodes.

Memetic algorithm (MO-CAMA) to search for optimal delivery routes for freight bikes by considering several.

Objectives such as travel distance, waiting time for charge, delay time and eco-friendly indicators.

Appropriate constraints such as:

Soft time-windows of deliveries are also built-into the developed models. By using the proposed MO-CAMA approach

Freight can be effectively collected by suppliers and delivered to shopping malls or be used for bikes' personal needs. Furthermore, the developed MO CAMA algorithms are also designed for fast response to real traffic information (e.g., traffic jams and vehicle breakdowns) from the visualization and analytics component, order changes from customers (e.g., changing delivery addresses or time windows) and loading dock timing allocation from the multi-party loading dock coordination.

In this study, we formulated the problem as follows. The transportation network is an undirected, complete graph.

G= { I,J,A} with I = {i1….in} as the set of supplier nodes (supplier location) j = {1,,…,jh} as the shopping malls A = { I, J,A} with I= {i1,…in} as the set of supplier nodes (supplier locations), J= {J1,….,jh} as the shopping malls A= {(I,j)| I,j E (I u P ) as the set of arcs denied between each pair of nodes , there exist a set of homogenous bikes B = { B1,… Bm} and a bike capacity qv A node I E( I u J ) has a collection demand Pi a delivery demand Di a service time Si and a time window [pbi,ei ] the service time Si termed as the actual time that the collection and or delivery takes once a bike arrives at a node I E (I u J ) not later than the time Ei, a bike is allowed to arrive before the earliest time bi, in which case it must wait until bi and then begins to serve the node. The terms gij and uv denied to measure the load factor between two nodes and the speed of vehicle V E V, respectively


Drone Delivery

Logistics stakeholders are factoring in these benefits, and according to estimates by Fortune Business Insights, this is leading to the global drone package delivery market size growing from $1.5 billion in 2022 to an estimated $31.2 billion by 2028 at a CAGR of 53.94 per cent.

Drone Technology

To tackle the inefficiencies in last-mile logistics, a growing number of logistics stakeholders are turning to drone technology as it can control operational costs, overcome traffic bottlenecks and reduce vehicular emissions while satisfying the customer appetite for on-demand and instant delivery.


SolarX Decentralized drone charging points that utilize solar power can be an innovative solution to provide sustainable and efficient charging for drones. Solar-powered charging stations can leverage renewable energy to recharge drones, reducing their reliance on fossil fuels and minimizing their carbon footprint.


Tracking and Authentication:

Blockchain technology can provide a secure and tamper-proof way of tracking drone deliveries from start to finish. Each drone will be equipped with a unique identifier that is recorded on the blockchain, along with the package's details. This information will be used to verify the authenticity of the delivery and ensure that it has not been tampered with during transit.

Smart Contracts

Smart contracts will be used to automate the entire delivery process, from order placement to package delivery. These contracts will be programmed to execute automatically once certain conditions are met, such as the package arriving at its destination.

Decentralized Network of SolarX

Blockchain technology will provide a decentralized network for drone delivery, enabling drones to communicate with each other and share data securely. This will help improve the efficiency of the delivery process by reducing the need for centralized communication and control systems.

In a decentralized setup, solar panels will be installed on charging stations that are created by buyers located in various locations, such as rooftops of buildings, open fields, or even on mobile charging stations that can be moved to different areas as needed. These solar panels can capture sunlight and convert it into electricity to charge the drones' batteries.


One advantage of using solar-powered charging points is that they can provide a continuous source of renewable energy during daylight hours, allowing drones to be charged without drawing power from the grid or relying on traditional fuel-powered generators. This can help reduce operational costs and minimize the environmental impact of drone operations.

Decentralized solar-powered charging points for drones can also be beneficial in remote or off-grid areas where access to electricity may be limited or unreliable. By utilizing solar power, drones can operate in these areas without needing to return to a centralized charging location, making them more versatile and extending their operational range.

Payment System

SolarX platform will also be used to create a secure and transparent payment system for drone deliveries. Smart contracts can be used to automate payment processing, ensuring that payment is made only when the package is delivered and verified by the recipient.

!! Compared to car delivery, we will be faster and cheaper.

Wi-Fi Drone

Also known as wireless drone charging, it is a concept where drones are charged wirelessly using Wi-Fi technology. This eliminates the need for physical connectors or charging cables, allowing drones to charge simply by being in proximity to a Wi-Fi charging station.


Wireless drone charging using Wi-Fi typically involves the use of resonant or inductive charging techniques. These techniques utilize electromagnetic fields generated by the charging station to transfer energy wirelessly to the drone's battery, enabling it to charge without any physical contact.

Advantages of Wi-Fi drone

The advantages of Wi-Fi drone charging include convenience, efficiency, and flexibility. Drones can be charged without the need for manual connection or docking, reducing downtime, and increasing operational efficiency. Wi-Fi charging stations will be installed in various locations, making it easier to establish decentralized charging points for drones. This can be particularly beneficial in remote or hard-to-reach areas where traditional charging infrastructure may not be feasible.

The charging points will be equipped with VPS technology, which would allow the drones to accurately locate and land on the charging pads. The VPS will use cameras and sensors to determine the drone's position, altitude, and orientation, ensuring a safe and accurate landing.

The charging pads will be made from solar panels, which would provide a sustainable source of energy for the charging process. The solar panel is designed to capture sunlight during the day and store the energy in batteries, which would power the charging process at night or during periods of low sunlight.

To enable the charging process, the charging points will use Wi-Fi to communicate with the drones. When a drone lands on the charging pad, it will be connected to the Wi-Fi network and initiate the charging process.

The charging points could be designed to be modular, allowing for easy installation and scalability. This would enable the charging infrastructure to grow as the demand for drone services increases.

The use of VPS and solar-powered charging points with Wi-Fi charging capabilities will be a sustainable and efficient solution for decentralized charging infrastructure for drones. Using renewable energy sources and modern technologies, it could help to reduce the carbon footprint of drone operations and improve the efficiency and accessibility of drone services.


Cloud Gaming


SolarX Cloud Gaming is a technology that allows users to play games on remote servers, with the game's visuals and inputs being streamed to the user's device. Decentralized cloud gaming refers to a cloud gaming infrastructure that is decentralized, meaning that it is not controlled by a single entity but rather distributed across multiple SolarX devices.

Cloud Gaming System

In a decentralized cloud gaming system, the game servers are distributed across a network of nodes, with each node responsible for hosting a portion of the game. The nodes communicate with each other to synchronize the game state and ensure that all players have a consistent gaming experience. This decentralized approach can potentially offer several advantages over traditional centralized cloud gaming systems.


Advantages of Cloud Gaming

One advantage is that it can be more resilient to failures or attacks, as there is no single point of failure or control. Another advantage is that it will potentially offer lower latency and faster gameplay, as the game data does not need to travel as far to reach the player's device. Additionally, a decentralized cloud gaming system will potentially offer greater privacy and security, as user data is distributed across multiple nodes rather than being centralized in one location.

1. Instant access: Playing your favorite games on the cloud eliminates the need to wait for downloads or updates because they are always available. The moment your keyboard, mouse, and controller are connected, the game may begin.

Save space on your computer: They save everything in one location, taking very little space on your computer, as opposed to having numerous copies of each game on your hard drive (or different consoles). Since this system doesn't require any installation fees, you can save both time and money.


No hardware requirements: All you need is an internet connection and a controller; you don't even need to acquire a computer or gaming console. You can use it to play games without having to download them on your device.

Play on any device with an internet connection: You can play your games from anywhere, whether you're at home or on the go, using any device with an internet connection.

Remote access: If you don't have a gaming console, you can still play video games on your phone or tablet via cloud gaming.




SolarX miners, everyday payments will be made from the SolarX treasury to the miners, which can provide a steady income stream for those who participate in mining SolarX.

SolarX will create connections to real life and offer payment opportunities for miners who offer work to the ecosystem. This can potentially help to incentivize more people to get involved in mining SolarX and contribute to the overall health and growth of the ecosystem.


Overall, a fair and transparent reward payment system is important for any cryptocurrency project, and it's good to see that SolarX is taking this aspect seriously.

SolarX plans to generate revenue through a variety of different sources, including fees from the mining device network, coin selling fees, drone purchase fees, recharging cars fees from electric grids, and gaming fees. All the fees will go to SolarX treasury.

These various revenue streams can help to create a sustainable ecosystem for SolarX and provide multiple avenues for generating income. Additionally, the steady income stream provided to miners through everyday payments from the SolarX treasury can also contribute to the overall health and growth of the ecosystem. Having a diverse set of revenue streams can help to ensure the long-term viability of a cryptocurrency project, and it's good to see that SolarX is exploring multiple avenues for generating income.


SolarX Group Company

The SolarX group company will have a diversified portfolio of products, services, and markets, enabling them to take advantage of a range of opportunities and mitigate risks.

Having a diversified portfolio will help the company balance short-term revenue goals with long-term strategic objectives. By investing in multiple areas, SolarX can generate sustainable revenue streams while also pursuing innovation and growth opportunities that may take longer to materialize.

Having more market results than one is a sign of a diverse and adaptable company that is well-positioned to take advantage of a variety of opportunities and navigate market challenges.

SolarX group company will operate in multiple markets, such as crypto, stock, drone, green energy, cloud, electric vehicle, and gaming has the potential to capitalize on a range of growth opportunities and mitigate risks associated with a single market.

Having a diverse portfolio of markets allows the company to capture growth opportunities in various industries and mitigate risks associated with a single market. However, SolarX group company has a clear strategy and focuses on its core competencies to effectively operate in multiple markets. Managing multiple businesses requires significant resources, expertise, and coordination, which can be challenging if not managed properly.

In conclusion

In conclusion, SolarX group company will operate in multiple markets, such as crypto, stock, drone, green energy, cloud, electric vehicle, and gaming has the potential for significant growth opportunities and diversification of risks.